
D~iC riLE COPY
NPS55-90-09

NAVAL POSTGRADUATE SCHOOL
(Monterey, CaliforniaL.O

ITI
UELECTE D

2'G R A DA3

VARIANCE REDUCTION FOR QUANTILE
ESTIMATES IN SIMULATIONS VIA NONLINEAR

CONTROLS

Peter A. W. Lewis
and

Richard L. Ressler

April 1990

Approved for public release; distribution is unlimited.

Prepared for:
Chief of Naval Research
Arlington, VA



NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

Rear Admiral R. W. West, Jr. Harrison Shull
Superintendent Provost

This report was sponsored by the Chief of Naval Research and funded by the Naval
Postgraduate School.

This report was prepared by:

P. A. W. LEWIS
Professor of Operations Research

Reviewed by: Released by:

PETER PUJRDUE Dean of Faculty and Graduate Studies
Professor and Chairman
Department of Operations Research



UNCLASSIFIED
Security Classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification Unclassified lb Restrictive Markings

2a Security Classification Authority 3 Distribution Availability of Report

2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

NPS55-90-09

6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization

Naval Postgraduate School (if Applicable) OR Chief of Naval Research
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)

Monterey, CA 93943-5000 Arlington, VA
8a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

(If Applicable)
Naval Postgraduate School O&MN, Direct Funding
8c Address (city, state, and ZIP code) 10 Source of Funding Numbers

ftogrm Blem "NumberI Project No ITo* No IWok Unit Acousion No

11 Title (Include Security Classification)
Variance Reduction for Quantile Estimates in Simulations via Nonlinear Controls
12 Personal Author(s) Peter A. W. Lewis and Richard L. Rssler
13a Type of Report 13b Time Covered 14 Date of Report (year, month,day) 15 Page Count

Technical I From To 1990, April 33
16 Supplementary Notation The views expressed in this paper are those of the author and do not reflect the official
policy or position of the Deartment of Defense or the U.S. Government.
17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)

Field Group Subgroup Variance reduction; quantiles; nonlinear controls; transformations; ACE;
least-squares regression; jackknifing (k 12) (--

19 Abstract (continue on everse if necessary and identify by block number

inear controls a well known simple technique for achieving variance reduction in computer simulation.
Unfortunately the ef tiveness of a linear control depends upon the correlation between the statistic of interest and
the control, which i often low. Since statistics often have a nonlinear relationship with the potential control
variables, nonlinear ontrols offer a means for improvement over linear controls. This paper focuses on the use
of nonlinear controls or reducing the variance of quantile estimates in simulation. It is shown that one can
substantially reduce analytic effort required to develop a nonlinear control from a quantile estimator by using a
strictly monotone tran formation to create the nonlinear control. It is also shown that as one increases the sample
size for the quantile es' tor, the asymptotic multivariate normal distribution of the quantile of interest and the
control reduces the eff tiveness of the nonlinear control to that of the the linear control. However, the data has to
be sectioned to obtain estimate of the variance of the controlled quantile estimate. Graphical methods are
suggested for selecting section size that maximizes the effectiveness of the nonlinear control.

20 Distribution/Availability of Abstract 21 Abstract Security Classification
M unclasified/uninited [" me , report ' DTIC Unclassified

22a Name of Responsible Individual 22b Telephone (Inclade Area code) 22c Office Symbol
Lewis, P. A. W. (408) 646-2283 OR/Lw
DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete UNCLASSIFIED

i



VARIANCE REDUCTION FOR QUANTILE
ESTIMATES IN SIMULATIONS VIA

NONLINEAR CONTROLS

Richard L. Ressler Peter A. W. Lewis

Naval Postgraduate School
Monterey, CA 93943

Key Words and Phrases: variance reduction; quantiles; nonlinear controls; trans-
formations; ACE; least-squares regression; jackknifing

ABSTRACT

Linear controls are a well known simple technique for achieving variance
reduction in computer simulation. Unfortunately the effectiveness of a linear
control depends upon the correlation between the statistic of interest and the
control, which is often low. Since statistics often have a nonlinear relation-
ship with the potential control variables, nonlinear controls offer a means for
improvement over linear controls. This paper focuses on the use of nonlin-
ear controls for reducing the variance of quantile estimates in simulation. It is
shown that one can substantially reduce the analytic effort required to develop a
nonlinear control from a quantile estimator by using a strictly monotone trans-
formation to create the nonlinear control. It is also shown that as one increases
the sample size for the quantile estimator, the asymptotic multivariate normal
distribution of the quantile of interest and the control reduces the effectiveness
of the nonlinear control to that of the linear control. However, the data has
to be sectioned to obtain an estimate of the variance of the controlled quantile
estimate. Graphical methods are suggested for selecting the section size that
maximizes the effectiveness of the nonlinear control.

1 OUTLINE OF THE PAPER

The paper begins with a short discussion of quantiles and the properties of a
quantile estimator, with emphasis on the need for a reliable estimator for the vari-
ance of the quantile estimator. The next part of the pane- discusses linear controls
for quantile estimates and the subtleties involved wit", est7,,ating the coefficients
for the control functions. The discussion of linear contron' s followed by a discus-
sion of nonlinear controls and their application to reducing the variance of quantile



estimates for a fixed simulation sample size. The final part of the paper presents an
extract of results from a simulation experiment where crude, linearly controlled and
nonlinearly controlled estimators are compared. Throughout the paper the empha-
sis is on quantile estimation for continuous random variables, though other cases
are of interest.

2 QUANTILES

2.1 Properties of a Quantile Estimator

Let Y be a random variable with a right-continuous distribution function defined
by

Fy(y) = Pr{Y < y}, -oo<y<oo.

Following Serfling (1980) define the a quantile of Y, y,,, for 0 < a < 1, as the value

F7'(a) = inf {y : Fy(y) > a}. (1)

If Fy(y) is strictly increasing, y, is unique for each a. Additional restrictions
on Fy(y), such as continuity at ya, may be needed for the existence of certain
asymptotic properties and will be stated as required.

Given a simulation sample of n independent and identically distributed (i.i.d.)
samples of Y, namely Y1 ,...,Y,, one can construct a sample distribution function,
F,, by placing at each observation Yi, a mass 1I/n. Thus F, may be represented as

F.(y) = - I(Y y), < y <oo
ni=1

where I(.) is an indicator function which returns 1 if the argument is true and 0

otherwise.
For a sample of size n, one can define a nonparametric estimator of the a quantile,

c,(n), as the sample a quantile of the sample distribution function, or

j.(n) = Fn'(a).

Using the sample a quantile to estimate y,, is equivalent to using the order statistics
of the sample, Y(1 ) <, ... , < Yn), and defining a nonparametric estimator of the
a quantile, j,(n), as in Lewis and Orav (1989), as

,(n) = Y =  ) if na is an integer

Y(naj+1) if no is not an integer (2)

where [wj denotes the integral part of w.

For a given n and a, G,(n) is the rth order statistic from the n-sized sample
where r is determined as in (2). The following results on the distribution of ,(n)

are well known (David 1970, chap. 1-3 or Kendall and Stuart 1977, pp. 25i-252).

2



Let Fj.(,)(y) be the cumulative distribution function of the quantile estimator.
Then F4,(,Q(y) can be written as

Fj (,) (y) = Pr {(n) _< y}

= Pr at least r of the n Yi are < y}
n F

()F(y) [1 - Fy(y)]n- i , (3)
1=?

since the term in the summand is the binomial probability that exactly i of the Y,
are less than or equal to y. If the Yi are continuous with a density function fy(y),
the density function of ji,(n) is

h. (n) (Y)-, (,_ -(Y)[1- FY(y)1'a 7 fy(Y)

where B(-, .) represents the complete beta function. Unfortunately, while Pa(n) is a
nonparametric estimator, (3) shows that the distribution of the quantile estimator
P,(n) depends not only on n and a but also on the unknown distribution of the
underlying Y.

The bias and variance of 9,,(n) also depend on n, a, and the distribution of the
underlying Y. Assume that Fy(y) is continuous with a density function fy(y) which
is differentiable and nonzero at y,. The following result for the expected value of
the quantile estimator can be derived from results in David (1970, p. 65):

E[c, (n)] y nf(y. ) 2 (n +- 2)/fy2(y.) + 0 (4)

where e is a sawtooth function of n and a such that Ije < 1 and f'(.) denotes
the derivative of the function f(.). An expansion for the variance of the quantile
estimator can be derived in similar fashion as

var[P.(n)]= aly (n - a(1- a) + (5)
(n + 2) fy (y) +0 )

The notation g(n) = 0(1/n 2 ) means that the absolute value of g(n)/(1/n 2 ) remains
bounded as n goes to infinity.

There are also well known asymptotic results for ko(n) (Serfling, 1980, sec. 2.3).

" If y, is the unique solution y of F(y-) < a < F(y), then a(n)--+y,, with
probability 1 as n --- * 0o.

" If Fy(y) possesses a density fy(y) in a neighborhood of ya, and fy(y) is pos- ton For

itive and continuous at y,, then j,(n) has an asymptotic normal distribution
in that B 1{ a(1 - a) 1/ -ced 13

Fi.(n)(Y) ~ N y 2y) as n -  oo. -ation

by
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Availability Codes
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* Weiss (1964) proved that under mild conditions, the sample marginal quantiles
from a multivariate population with an absolutely continuous joint distribution
function have an asymptotic multivariate normal distribution. The asymptotic
covariance is a function of the multivariate distribution of the underlying mul-
tivariate population. This multivariate result is important because of the role
of the joint distribution of the controlled and controlling statistics in the theory
of controls for variance reduction.

2.2 Using Sectioning to Estimate the Variance of a Quantile Es-
timator

When using (2) to calculate a point estimate of the a quantile, one must also
estimate the variance or equivalently the standard deviation of the point estimate.
One could estimate the density of Y at y,, and use (5) to estimate the variance.
However, the instability of density estimates at extreme quantiles can cause this to
be a very biased and unstable estimate of the variance of j,(n). A more general
technique is to use sectioning to calculate both a point estimate of the quantile
and an estimate of the variance of the point estimate. While non-parametric con-
fidence intervals are available for crude quantile estimates (see Mood Graybill and
Boes 1974, p. 312), the confidence intervals are not appropriate for controlled esti-
mates. A brief discussion of sectioning follows; for a detailed discussion of sectioning
see Lewis and Orav (1989, chap. 9).

Let the random variable 9c,(n) be the function of independent and identically
distributed random variables Y,...,Y defined in (2) such that p0(n) is a point
estimator of y,. Let o.2 denote the variance of 9a(n). Assume for now that there

j. (n)
are a total of N = m x n independent samples of Y, namely Yl,..., Yn,..., YN. The
sectioned point estimator, a(m, n), is constructed as follows:

1. Divide the N samples of the random variable Y into m sections with n samples
each where for simplicity n x m = N (equivalently, replicate a sample of size n,
m times).

2. For the jth section, j = 1,... ,m, use (2) to compute f,,j(n).

3. Compute ,'(m,n) as:

(m, n) = () (6)
M7 j--I

The point estimator ya(m,n) is a sample mean of m independent estimates,
each of which is based on n samples.

4. Estimate the variance of (m, n), namely - with the sample variance

of the sample mean:

. 1 (-n (n) n). (7)
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One advantage of sectioning to estimate the variance of the quantile estimate
over estimating the density is that since the a,,j(n) in step 2 above are i.i.d. and
the point estimator -(m, n) is their sample mean, S-(mn) is an unbiased estimate

of the variance of the point estimate. Furthermore, if the ja,j(n) are approximately
normally distributed, one can develop approximate confidence intervals for 9,(m, n)
based on a t-statistic with m - 1 degrees of freedom. A disadvantage of sectioning
is the increase in the bias of the point estimate; the first-order bias predicted by (4)
for #?(m,n) is m times that for #,(N), a point estimate based on all N samples.

For fixed N, the selection of m and n involves a tradeoff between the bias and
the variance of ia(m,n)as well as the precision of the estimate of the variance
of j,0 (m, n). To minimize the bias in #6 (m, n), as well as improve the approximation
to normality of theindividual #j(n), one would like n to be large. A drawback of
increasing n iq the decrease in precision of the estimate of the variance of the point
estimate as well as a decrease in the degrees of freedom, m - 1, for the t-stat; 1ic,
which relaxes the confidence interval. Using (5) and (7), one can write the expansion
for the variance of the sectioned estimate in terms of m only as

2 01 (n)'1
- - (IN + )+ + o , (8)

where 8 and -y are constants determined by Fy(y) and a. The presence of m in
both the denominator and the numerator in (8) implies, for fixed N, that the value
of m which minimizes the variance is a function of the relative magnitudes of 0
and -. If /3 is small relative to -y, one should choose a small m in order to minimize
the variance. The value for m must be at least 2 in order to use (7) to estimate
the variance. Values for m and n which will minimize the variance or the mean
square error of the point estimate can be determined as functions of terms such
as /3 and 7. However, these terms are in turn functions of the distribution of Y
which is unknown. After consideration of the above, Lewis and Orav (1989, p. 262)
suggest as a "rough rule of thumb" to make m between 12 and 20 for samples with
N over 1000. This usually gives sufficient precision for the estimate of the variance
of #(m,n).

Once m and n have been selected, the variance of the point estimate can be
estimated. Equation (5) shows that a 2 (n) is a decreasing function of n. For fixed
m, a decrease in a? ) will cause a corresponding decrease in a-- . A techniqueye (n) y.(-,n)
for reducing a, (n) without increasing n is linear controls.

3 LINEAR CONTROL OF QUANTILES

3.1 Single and Multiple Linear Controls

3.1.1 A Single Linear Control

Linear controls is a variance reduction technique which can be used to reduce the
variance of an estimate of a statistic of interest, often a sample mean. The statistic
of interest in this paper is the quantile estimator Q(n) from (2) and eventually the
individual section estimate P,,j(n) from (6).

5



To use a linear control for variance reduction a random variable generated in
the simulation, called the control or control variable, which is correlated with P,,(n),
must be available. The expected value of the control must be known, either exactly
or approximately. Let C be a random variable which is generated via simulation.
Although an estimator of the a quantile of C is not necessarily the most effective
control for a given quantile or Y, for purposes of discussion we will use as the control
variable the estimator of the a quantile of C as defined in (2), namely e,(n). The
random variable 4,(n) is a function of n i.i.d. samples of the random variable C.
If e,4(n) is generated as part of the simulation that produces the samples of Y it
will be called an internal control variable. If 6,(n) is generated as output from a
different simulation, it will be called an external control variable.

The linear control scheme for variance reduction, with a single control, uses as a
control function a linear additive combination of the control and its expected value to
produce a controlled estimate :V,(n) where the prime applied to an estimate implies
that it is a controlled estimate. The control function, with coefficient 0, is subtracted
off from the uncontrolled or crude estimate P(n) to produce the controlled estimate
as follows:

,(n) = Pa(n) - 0 {4a(n) - E[ .(n)]} (9)

Putting aside the question of sectioning for now, the purpose of using a control
is to minimize the variance of the controlled estimate,al (n), for a fixed sample
size n. If the statistic of interest is 9aj(n) from (6), minimizing its variance will,
for fixed m, minimize the variance of the section estimate y',(m, n). The value of 0
which minimizes al0( can be determined using differentiation to be the regression
coefficient from the regression of ,(n) on 64(n);

0 -p(o(n),(-(n)) (10)
c.o(n) 0a. (n)

where rai(n),ao(n) is the covariance of a(n) and 4(n) and p(9c,(n),e4(n)) is the

correlation between ,(n) and e4(n).

3.1.2 Multiple Linear Controls

One can use multiple controls for variance reduction where 6a(n) and 0 become
p-dimensional column vectors, 4_ (n) and _ with components 4,,(n) and 0;, for
i = 1,... ,p. With multiple controls, equation (9) becomes

.'0(n) = .(n) -_T {(n) - E[4(n)]}. (11)

It can be shown (see Kendall and Stuart, 1977, chap. 27) that in the multiple control
case, the values for 8 which minimize ao.(n) are the multiple regression coefficients

= O.- (12)

where Ea.(n) is the covariance matrix of 4 (n) and aio(n),(n) is the p-dimensional
vector with components cov(9,(n),4,,,i(n)), for i = 1,...,p.

6



Rubinstein and Marcus (1985) demonstrated that the solution for 0 in the linear
control of a single response, ja(n), is a special case of determining the canonical
correlation coefficients for maximizing the correlation between linear combinations
of multiple responses and multiple controls.

3.2 A Measure of the Effectiveness of a Control for Variance Re-
duction

One measure of effectiveness for a particular linear control is the percent variance
reduction which involves the ratio of the variance of the controlled estimate 9'(n)
to the uncontrolled estimate p0 (n). A high percent variance reduction implies that
the control is effective at reducing the variance of the point estimate. For a single
control, assuming the optimal value for 0 is known, the percent variance reduction
is

2
1 2 P2 ((13)

Equation (13) implies that for the control to be effective, one should choose a random
variable which is "strongly" correlated with g,(n) to be the control variable 6,(n).

For multiple controls, the percent variance reduction is the direct generalization

o,2I - '3.(,(i(n) (14)
Y.(n)

where

R y,(n), (,(n = ,(

ye(n)

is the square of the multiple correlation coefficient between 1a(n) and :_.,(n). As
before, the effectiveness of the control depends upon a large value for R2

When the number of multiple controls to use is given, one should simply choose
those controls which maximize the R?. ..... However, determining the number
of multiple controls to use is a more difficult problem which is complicated by the
necessity of estimating the coefficients in 0.

3.3 Use of the Asymptotic Expected Value as an Approximation
for the Expected Value of the Control

When using a linear control for variance reduction, the expected value of the
control is subtracted from the control variable in the control function as in (9) so
that the control function will have a mean of zero. A mean-zero control function is
desirable when controlling an unbiased estimator such as a sample mean so that the
controlled estimate is also unbiased. However, expected values of quantile estimators
are rarely known exactly. If the values of the density function of C and its derivative
at c, are known, the biased expected value of the quantile estimator from (4) can
be subtracted in the control function so that the control function does not affect
the first order bias in the controlled quantile estimate. If the expected value of the
biased quantile estimator is not known, it can be approximated by the asymptotic

7



expected value of the estimator; i.e. the actual quantile value c,. The value c,
will replace E[6(n)] in the control function in (9). While this causes the control
function to have order 1/n bias, there is already order 1/n bias in the estimate being
controlled, P,(n), so that the order of the bias in the controlled estimate is the same
as in the uncontrolled estimate.

Even when the biased expected value for the control from (4) is known, it may
desirable to use the asymptotic value. There is empirical evidence, and it can
be shown analytically, that use of a control function with order 1/n bias can ac-
tually decrease the magnitude of the first-order bias in the controlled estimate.
For example, let Bi.(,) denote the first order bias of ,Q(n) computed using (4) as
B.(n) = E[ .(n)] - y, + 0(1/n 2 ) and let Ba(n) denote the bias of 6,(n) computed
similarly. If using the linear control scheme (9) to control a quantile estimate, where
13.(n)/B6o(n) is positive and

0 < 0 < 2 L ,

the magnitude of the first-order bias of the controlled estimate is less than the
magnitude of the first-order bias of the uncontrolled estimate.

If we are using sectioning to generate the overall point estimate and an estimate
of the variance (standard deviation) of the point estimate, and we assume that 0 is
known, equations (6) and (7) can be combined with the linear control equation, (9),
to get

m,n) j(n) (15)

- {Ef.j(n) - (.j(n) - c.)} (16)--r j=1

with an unbiased estimate of the variance of the controlled estimate of

s!_ 1 M 7om ) 2. (17)
(mn) - mFn -1) ~ {f 1j(n) (m,n)-m(m - 1) = *

These results are straightforward. It is when 0 is not known, the usual case, and
has to be estimated using sectioning, that estimating the variance of the controlled
estimate requires some care.

3.4 Estimating the Coefficients

In the usual case in simulation, the values for 0 or 0 must be estimated since
not enough information is known about the joint distribution of ),(n) and _ (n) to
determine the regression coefficients. For notation's sake, assume that one is using
a single control. If using sectioning to estimate the point estimate along with its
variance, the sectioned estimates i(n) and 6i(n), for j = 1,...,m are available
to use to estimate 0. One could generate sample estimates of the variance and
covariances in (10) to estimate 0; however since 0 is the coefficient of regression, an
equivalent but computationally more convenient method for estimating 0 is to use
linear least-squares regression.

8



The regression coefficient 0 can be estimated by the least squares regression of
[j~j(n) - Y.(m, n)] on 0[4 4j(n) - ca] using the regression model

[Paj (n)- Y. (m,n)]- [&.,j(n)-c.]+ej, j - 1,...,m (18)

where the &,j(n) are considered fixed and ci is a mean-zero random variable inde-
pendent of 6cj(n). Denote by O(m,n) the estimate of 0 from a regression which
used m estimates for both the dependent variable and the predictor variable, where
each of the estimates was based on n independent samples of Y or C as appropriate.

Once 0(m, n) is computed, the controlled estimate for each section can be com-
puted using (9) as

= j(n) - 9(m,n) {.j(n) - ca}. (19)

where ca is the approximation for the expected value of the control. The final
controlled section estimate, ;(m,n), can be computed using (15) as the sample
mean of the controlled estimates from each section. Unfortunately, estimating the
variance of the Z(m,n) with (17) is not as straightforward since the individual
',j(n) are generally no longer independent because of the common 0(m, n). The

characteristics of the quantile estimates and the variance estimates depend upon the
joint distribution of 9a(n) and 4,(n).

3.4.1 Subtleties with the Joint Distribution of the Estimators

A key point of linear controls for quantile estimates is that the joint distribution
of the statistic being controlled and the control statistic, here Pa(n) and 4"(n), is
of primary importance for determining 0 and the characteristics of the controlled
estimate, not the joint distribution of the underlying populations Y and C.

This is in contrast to the use of a linear control for controlling an estimate of the
mean, 9, with the sample mean of the control, e. In this case, one can determine 0
as a function of the joint distribution of Y and C since, using (10),

0 cov(p,e) cov(y,c)
var[e] = var[c]

Although the joint distribution of 9 and E is different from the joint distribution of
Y and C, one can estimate 0 using estimates of the population covariances based
on the N individual samples. In general, when controlling estima'ors other than
the sample mean, one must estimate the covariances from the joint distribution of
the controlled statistic and the control, not the joint distribution of the underlying
populations.

3.4.2 Sectioning with the Assumption that the Joint Distribution is
Multivariate Normal

If the joint distribution of 9a(n) and pr(n) is multivariate normal and 0 is estimated,
the point estimate of the quantile and the estimate of the variance of the point
estimate have several nice properties:

9



" the controlled estimates for each section, j4,J(n), are i.i.d. since the sample
covariance matrix of the ea,j(n) is independent of their sample mean.

-. the estimate of the variance of Z(m,n) from (17) where j,,n) is
computed using (19), is an unbiased estimator, and

" one can develop an unconditional confidence interval for f, (m, n) using the
t statistic following Lavenberg, Moeller and Welch (1982) since conditionally
unbiased estimators remain unbiased unconditionally and conditional confi-
dence intervals remain valid unconditionally (see Kendall and Stuart, 1977,
p. 379).

When the multivariate normal assumption is not valid,

" the controlled estimates from each section f,1 (n) are no longer independent
since the sample mean and covariance matrix are no longer independent. The
controlled estimates also have additional 0(1/m) bias from the estimation of 0.

" S&- from (17) can still be used to estimate the variance of Z(m,n) al-
though it is now biased, and

" even if the 1 (n) are normally distributed, a confidence interval based on
a t statistic is only approximate because of the lack of independence of the
individual section estimates.

One method for maintaining independence between the controlled section estimates
at the cost of a loss of variance reduction is to estimate 6 independently for each
section.

3.4.3 Subsectioning

An alternative to estimating a single 6(m, n), which couples the ,,(n) together so
that they are no longer independent, is to generate an individual estimate of 0 for
each section. This can be done by subsectioning the n samples within the section
and calculating quantile estimates within the section to use as data to estimate
Oj(v, 1). More formally, for each jth section, for j = 1,... ,M,

1. divide the n samples into v subsections of length 1 where v x 1 = n, and

2. estimate iJ,k() and 'ojk(I) for each kth subsection, for k = 1,...,v.

3. Use the v sets of subsection estimates j,k(l) and ,j,k(I) from the jth section
to estimate 0j(v, 1) using a regression model similar to (18).

Once Oj(v, 1) has been estimated, the controlled estimate for the jth section is com-
puted as

(n) 6i (v, 1) (6.,(n) - c.). (20)

The equation is similar to (19) only now there is a subscript on 0, which also has
different arguments. The final controlled estimate is calculated as before, as a sample

10



mean using (15), and the estimate of variance of the point estimates is calculated
using (17).

An advantage of subsectioning is that by using an independent estimate of a to
calculate each section's controlled estimate, the ty.,j(n) are now i.i.d.. A disadvan-
tage of using subsectioning is the loss of predicted variance reduction. This occurs
for two reasons. The first is that instead of needing one estimate of 0, now m esti-
mates are needed and each additional estimate tends to reduce the achieved percent
variance reduction. The second reason is that 0(v, 1) is not an unbiased estimator
of the regression coefficient for p0(n) and 6,(n) since it is calculated using quantile
estimates based on I samples, which have a different joint distribution than ,(n)
and e4(n). There can also be some additional bias in the #'a,j(n) from the estimation
of ai.

3.4.4 Splitting and The Jackknife

Other methods which have been used with linear controls for calculating a point
estimate and the variance of the point estimate include splitting and the jackknife.
Each of these techniques is described in Lewis and Orav (1989, chap. 9) and in
Nelson (1988).

The splitting technique removes the bias caused by estimating 0 with the same
data being controlled at the cost of reducing the percent variance reduction. Split-
ting has been described in Tocher (1963, p. 115) and then in Beale (1985). When
using sectioning to generate m individual section quantile estimates #,j(n) and
6,j(n), for j = 1,...,m, the splitting procedure generates an estimate of 0 for each
section. The estimate of 9 for the jth section is computed using all of the section
estimates except the jth set of estimates. The controlled estimate for each section
is computed using (20) with 9j(m - 1,n). The final controlled estimate and its
variance are computed as before as the sample mean of the individual controlled
section estimates and the sample variance of the sample mean

The splitting estimator eliminates the bias in ,,,j(n) due to estimating 0. How-
ever, like the sectioning estimator it has the disadvantage that the ,1j(n) are no
longer independent. It also has the same disadvantage as the subsection estimator
in that m estimates of 0 must be computed, reducing the percent variance reduc-
tion. The primary purpose for using the splitting estimator has been to eliminate
the 0(1/m) bias in the controlled estimate from the estimation of 0 in non-normal
samples when controlling unbiased estimators. Since the quantile estimator already
has O(1/n) bias, which is unaffected by splitting, and splitting has no other clear
advantages over the section or subsection estimator, we chose not to use it.

Jackknifing is a method for removing the 0(1/n) bias in ,(n) at the price of
uncertainty about the loss of percent of variance reduction in small to medium sized
samples. For an "m-fold"jackknife estimate, one combines an estimate based on the
entire data set, ,O(N), with m estimates, each based on the data set with N/m
samples deleted, jpj(N - m), for j = 1,... ,r, to get a set of m 'pseudo values"
(j) (N- m), for j = 1,..., m. The final jackknife point estimate is the sample mean
of the pseudo values. In some circumstances, one can also use the sample variance of
the sample mean of the pseudo values as an estimate of the variance of the jackknife
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point estimate.
The jackknife estimate has an advantage over the section and subsection esti-

mators in that the bias of the quantile estimates is reduced since each pseudo value
is based on estimates using N - m instead of N/m samples. Unfortunately it has
some disadvantages as well. Lavenberg, Moeller and Welch (1982) examined the use
of the jackknife when using a linear control for the sample mean under the assump-
tion of a multivariate normal distribution between the statistic of interest and the
control. They found that the jackknifed confidence interval was usually larger and
more computationally expensive than the standard linear control based confidence
interval. Nelson (1988) compared the performance of several methods for linear
control of the mean when the normality assumption was violated and found that
the jackknife was usually "dominated" by the splitting estimator.

The jackknife has been used in quantile estimation. Seila (1982) used a 2-fold
jackknife for removing the bias of quantile estimates however he used a sectioning

approach for estimating the variance of the point estimate, not the jackknife estimate
for the variance of the point estimate. Miller (1974), and Efron and Gong (1983)
imply that the jackknife technique may not be an appropriate tool for use with
quantile estimation because of the discontinuous, nonlinear nature of quantile esti-
mators such as (2). Our empirical results (presented in the last section) confirmed
that the jackknife was not suitable for computing quantile estimates and estimates

of the variance of the jackknife point estimate because of the high variability of the
point estimates and the poor performance of the jackknife estimate of the variance

of the jackknife point estimator.

3.5 The Loss Factor

In general, regardless of the method chosen, estimating the coefficients can cause
a reduction in the percent variance reduction predicted by (13) or (14). Lavenberg,
Moeller and Welch (1982) investigated the decrease in predicted variance reduction
caused by using the individual samples to estimate J for a linear control of the sam-
ple mean. Under the assumption of multivariate normality between the statistic of
interest and the control, they concluded that the decrease in variance reduction due

to estimating 9 could be predicted by multiplying the R2 (.) in (14) by a "loss factor".
The loss factor was (m - 2)/(m - p - 2) where m was the number of independent
samples of the statistic being controlled and p was the number of controls whose co-

efficients had to be estimated. The loss factor is a deterrent to adding more controls
simply to achieve a small increase in the R2 in (14). As one selects more controls
for a multiple control scheme, the impact of the loss factor can quickly overcome
the benefits of increasing the R 2. Thus one can not guarantee an improvement in
the effectiveness of a linear control by simply adding more controls.

3.6 Measuring the Effectiveness of a Control at Reducing Sample
Sizes

Lewis and Orav (1989, p. 262) mention an alternative measure for quantifying
the effectiveness of a control scheme. They look at the square root of the ratio of
the variance of the uncontrolled estimate to the variance of the controlled estimate.
This ratio can be considered to be the ratio of the sample size that would be needed
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to achieve a given standard deviation without using the control scheme, to the
sample size needed to achieve the same standard deviation using the control. When
expressed in terms of the correlation coefficient for the controlled statistic and the
control, the ratio becomes 1/(1 - p 2(.)) 1/2. Given a value for p(.), the formula gives
the increase in the sample size that would be needed to achieve the same standard
deviation without the control. Given a desired reduction in sample size, say 1/2, the
formula implies that to achieve a given standard deviation while cutting the sample
size in half, one must have 1 - p2 = .26, which implies a correlation coefficient
of ±0.86.

Linear controls are typically unable to reduce the sample size by as much as a
half because the correlation between the statistic of interest and a linear function
of the control variables is not high enough. Since many statistics have a nonlinear
relationship with the control variables, one possible means for increasing the variance
reduction for a given set of controls is to allow nonlinear transformations of the
controls.

4 NONLINEAR CONTROLS

4.1 Definition of a Nonlinear Control

One can generalize the linear control scheme for p controls, (11), to include
nonlinear transformations of random variables as controls for variance reduction
as shown in Lewis, Ressler and Wood (1989). Let h#(&,,i(n),O0), for i = 1,...,p,
be a transformation function of the random variable ,,(n) and let . be a vector
of coefficients where, depending upon hi(.), the vector 0 may have more than one
component. When incorporating nonlinear transformations of multiple controls, the
linear control scheme (11) becomes

(n) ( - H(.(n),O_) (21)

where for our purposes H(-) is a linear additive combination of the p transformed
controls, hj(O,,i(n), 0), and their expected values, E[hi( ,,.i(n),Oi)], for i = 1... , p.
The vector f contains the coefficients from the linear combination in addition to the
p sets of coefficients from the individual transformations. H( (n), j) will be referred
to as the control function. A control function with terms that are nonlinear in the
unknown coefficients will be said to be a nonlinear control. For ease of notation,
the coefficients J may be suppressed in the expressions for H(.) and h(.). When
there is only one control so that p = 1, the subscript i will be suppressed so that

= h(.).
In some simulations possible control variables may have very low correlation

with !a(n). For a given control, two of the possible sources for the low correlation
between ,,(n) and e (n) are:

1. there is in fact very little structural relationship between ,Q(n) and the control;
i.e. a bivariate scatter plot of j(n) versus ,(n) would look patternless, or

2. the structural relationship between jp0(n) and eQ(n) is of a nonlinear form
which is poorly approximated by a straight line.
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In the first case, a nonlinear control may or may not offer improvement over the linear
control. In the second case, a nonlinear control can offer substantial improvement
in variance reduction, as shown in Lewis, Ressler and Wood (1989).

A simple example will show the potential benefits of nonlinear transformations.
Let z be a Normal (0,1) random variable which is being used to control the sample
mean of w = z2 . It follows that

cov(w, z) = E[z3] - E[z2 ]E[z] = 0

so that p(w, z) is zero, which implies zero effectiveness for the linear control as well.
Now allow the nonlinear transformation

h'(z) = h(z,9) = ze

with 0 = 2. The transformed random variable h*(z) is a X, random variable with
mean 1 and variance 2. It follows that

2cov(w,h'(z)) = var[z2] - 2 := p(w,h*(z)) - 2=- 1

so that the nonlinear control is completely effective. Therefore when evaluating a
potential control, one should ask: Can this random variable be transformed to have
a "high' correlation with the statistic of interest?

4.2 The Existence of Optimal Nonlinear Transformations

For some random variables, transformations do exist which will improve their
correlation with ja(n).

" Let j) (n) and !,,(n), with p components 4,i(n), for i = 1,...,p, be random
variables with a general but nonsingular joint distribution.

" Let g( .(n)) = g(P.(n),O) and hi(6,i(n)) = h(4,i(n),), for i = 1,...,p
be mean-zero transformation functions of random variables Oa(n) and e0,i(n)
such that var[g(j.(n))] = 1 and var[hi(a,i(n))] < oo, for i = 1,... ,p.

Breiman and Friedman (1985) proved the existence of optimal transformations for
maximizing the correlation between g(p 0(n)) and H(_(n)), a linear additive func-
tion of the mean-zero h(8,ai(n)). The optimal transformation for one variable can
be expressed in terms of the conditional expected values of given transformations of
the other variables. In the bivariate case, where H(.) = h(-) since p = 1, the pair of
optimal transformations g*(.) and h*(.) are:

E h(4(n))
SIE[h*(a(n)) I P.(n)]l

and
h*(e.(n)) = E[g*( .(n)) I e.(n)]

where I"2II =
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In the multiple control case, where p > 1,

E " h(l)],i(n)) 0(n)

(22)
IfE [ EV(4.i(n)) P.n

and

V=c,~) E 9(lPa(n)) - h;4 n)](23)

The transformations g*(.) and h*(.) in (22) and (23) will usually be nonlinear, the
exception being when jca(n) and 4(n) have a multivariate normal distribution.

Results from Lancaster (1966) can be used to show that if j (n) and 4(n) have
a multivariate normal distribution, the solutions for g(,(n)) and H(4(n)) which
have maximal correlation between g(ja(n)) and H(4(n)), over all measurable func-
tions of finite variance, are the linear transformations which yield the first Hotelling
canonical variables. In other words, when Pa(n) and 4,,(n) have a multivariate nor-
mal distribution, using the linear control scheme (11), with the multiple regression
coefficients for 9, produces the greatest amount of variance reduction. Conversely,
whenever the joint distribution of ja(n) and 4(n) is not multivariate normal, a
nonlinear control offers the possibility for greater variance reduction over a linear
control.

4.3 Estimating the Optimal Nonlinear Transformations

Determining the optimal transformations in (22) and (23) analytically requires
the joint distribution of P,(n) and 4,(n) which, in the context of a simulation, is
unknown. In the multivariate normal case, the form of the transformations are
known to be linear and one can estimate the coefficients using one of the methods
described earlier. With a nonlinear control, one must first estimate the form of the
transformations.

Breiman and Friedman (1985) also developed the Alternating Conditional Ex-
pectation Algorithm (ACE) as a means for generating nonparametric estimates of
the optimal transformations (22) and (23). In the ACE implementation for finite
data sets of continuous variables, data smooths are used in place of the analytical
conditional expected values. The ACE algorithm produces estimates of the optimal
transformations as sets of fitted values, one set for each variable. Plotting the fitted
values against the original values gives the shape of the estimated transformation for
each variable. ACE also provides an estimate of the maximum obtainable squared
correlation between the transformed response and the sum of transformed predic-
tors. This R2 estimate is useful as it provides an estimate of an upper bound on the
percent variance reduction one can obtain using the given set of controls.

Since ACE does not give an explicit analytical form for its estimate of the optimal
transformation, one must approximate the optimal transformation with a parametric
nonlinear transformation. The output from ACE is useful in selecting an appropriate
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approximating transformation. One possible approximating transformation is the
scaled power transformation

h( )(n))) 1) for 0 > -1, (24)

where 0 is an unknown parameter which becomes a coefficient which must be esti-
mated. Using this transformation, the nonlinear control scheme (21) can become

j'()= P(n) -9 42f)-1 Ec()] (25)= 1( 2 E L 02 1

where both 01 and 02 need to be estimated. Other possible transformations are
described in Lewis, Ressler and Wood (1989).

As a general rule, a transformation should contain the linear transformation as a
special set of parameter values JL. This allows for the linear control to be a special
case of the nonlinear control when the joint distribution between the statistic of
interest and the control is multivariate normal. Choosing the special set of param-
eter values JL as starting values for the nonlinear optimizer which estimates the
coefficients initializes the optimizer at the linear control. Any movement made by
the optimizer away from the starting values implies that the nonlinear control is
giving improved variance reduction over the linear control. Thus using a nonlinear
control, one can not do worse than using a linear control.

One of the problems in choosing an approximating transformation hi(aai(n), .)
is that E[hi(6,,i(n),J)] must be known exactly or approximately. This severely limits
the selection of nonlinear transformations available to approximate h!(a,i(n)) as the
necessary expected values may be intractable or unknown for some transformations.
The difficulty in analytically determining the expected value of the transformed
control can be greatly reduced when using monotone transformations of quantile
estimators as controls, as is discussed in the next section.

5 NONLINEAR CONTROL OF QUANTILE ESTI-

MATES

5.1 The Behavior of Quantiles Under Monotone Transformations

Quantiles have a property that is especially useful when working with nonlin-
ear controls. Under strictly monotone transformations of the underlying random
variable, the quantiles transform monotonely as well. For example,

" let h(.) be a strictly monotone function with inverse h-'(.),

" let C be a random variable with a continuous, strictly monotone cumulative
distribution function such that for all a between zero and one, F3'(a) = c.,
and

" let W = h(C) be the transformed random variable.
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By definition of a quantile,

Pr {C _< ca = a and Pr{W <w.}=a.

Therefore:

Pr{W<wa) = Pr(h(C)<_w)

- P° C < = a.

This implies that for all a between zero and one,

w, = h(c.). (26)

For example, if C has a uniform (0,1) distribution with .9 quantile of c.9 = .9, then
the .9 quantile of W = h(C) = C 2 , namely w. 9 is equal to c2 = .9 2 = .81.

The key point is that the a quantile of a transformed random variable can be
found by applying the same transformation to the a quantile of the original random
variable.

5.2 Controlling Quantile Estimates

The fact that quantiles transform monotonely under strictly monotone trans-
formations of the underlying random variable can also be useful in computing the
expected value of a transformed quantile estimator. It is important to note that
the random variable being transformed is the quantile estimator 6.(n) and not the
underlying C. For a given nonlinear transformation, it may be possible to compute
the expected value of h(4a(n)). For example, if C has a uniform (0,1) distribution,
and h(4,(n)) is the scaled power transformation, (24) where 0 is constrained to be
non-negative, h(E4(n)) has a Beta distribution with a known expected value. For
other distributions of 6,(n), or other transformations h(.), the expected value may
not be tractable. This is where the use of strictly monotone transformations can
help.

We are interested in the expected value of the transformed quantile estimator.
When a strictly monotone transformation is applied to the underlying C, the quan-
tile estimator 6.(n) transforms monotonely as well, i.e. if 6'(n) estimates ca and
h(C) = W, with a quantile w,, then

tb. (n) =

From the point of view of the quantile estimator, applying a strictly monotone
transformation to a quantile estimator, E,(n), yields the same estimate as using the
identical transformation on the underlying random variable C and then using (2) to
estimate the a quantile. Although for small n

E [h(64(n))] # h(E [E.(n)]),

it is true that as n --- + oo,

E [h(6.(n))] -- h(c.) and h(E[4a(n)]) - h(c.)
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so that asymptotically, the expected value of the transformed quantile estimator
is the same as the expected value of the quantile estimator of the transformed
underlying random variable.

Since the asymptotic expected values are the same, if the individual transforma-
tion functions h(.) in the control function H(4,(n),.) are restricted to strictly mono-
tone transformations, one can approximate E[h(e,(n),J)J in the nonlinear control
function H(&a(n),J), with the asymptotic expected value of the transformed con-
trol, namely, the transformed value of the a quantile, h(ca, .). Calculating h(ca,f)
is trivial since c. is a constant. Using the asymptotic expected value with the scaled
power transformation, the nonlinear control scheme becomes

= 1(n) - { (n)2 -" c2- 1

The use of the approximation introduces bias into the control function, but it is
still 0(1/n) and may, as in the linear control case, reduce the magnitude of the first
order bias of the controlled estimate. The key point is that the analytical burden of
calculating the expected value of the transformed control has been greatly reduced.

Once the approximating transformations for the have been selected, one can
use either the section or subsection estimator to estimate f and calculate the final,
controlled point estimate .t)(m,n) in (15) and an estimate of the variance of the
point estimate. Regardless of the method, the coefficients in f for h(,, _) can
be estimated using a nonlinear least-squares regression algorithm as the nonlinear
optimizer.

5.3 Selection of rn and n for a Nonlinearly Controlled Section
Estimate when k Must be Estimated

A major factor that must also be considered in the selection of m and n for
fixed sample size N is the impact of n, the number of samples used to compute
the individual quantile estimates, on the joint normality of the quantile estimates.
When computing a controlled section estimate and estimating the coefficients J, the
impact of m and n on the variance of the estimate _(m, n) must also be considered.

As previously discussed, given a fixed sample size N the values of m and n
which minimize the mean square error of the crude section estimate are a function
of the coefficients in the asymptotic expansions for the mean and variance of the
estimator, equations (4) and (5). The variance of the controlled estimate P'(n)
is a function of the variance of the estimate of the coefficients f in addition to
the variance of the crude estimate, #,,,(n), and the variance of the estimate of the
control )(n). In general, the bias and variance of coefficients estimated via least-
squares nonlinear regression is a decreasing function of the number of estimates
used as data in the regression (see Gallant, 1987, chap. 1). When using the section
estimator, this implies that one would like m, the number of quantile estimates,
to be large. However, as m increases for fixed N, n must decrease, increasing the
bias and variance of the estimates used as data in the regression. If n is too small,
the bias and variance of the estimates could be such that there is actually very
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little nonlinear or even linear relationship between the crude and control quantile
estimates so that any control scheme is ineffective.

If n, the number of samples in a section, is too large, the joint distribution of
the crude and control quantile estimates approaches a joint normal distribution as
seen in part 2.1. The impact of the joint normality is that the optimal nonlinear
transformation is now the linear transformation of the linear control as seen in
part 4.2 and one has lost the increased effectiveness of the nonlinear control. This
result is similar to one obtained by Glynn and Whitt (1989) who state that "no
improvement in asymptotic efficiency can be achieved by generalizing the notion
of control variables from a linear form to a nonlinear setting." They go on to
say however, "...this does not preclude the possibility of better performance by
nonlinear methods in a small sample context." The key point is that by avoiding
the asymptotic joint normality through keeping small the number of samples used
to compute the individual quantile estimates, the nonlinear controls can be more
effective than the asymptotic linear controls.

When using the subsection estimator, the interplay between m and n changes.
One must now consider the impact of choices for v, the number of subsection esti-
mates, and 1, the number of samples used to compute a subsection estimate. With
the section estimator one wanted m, as the number of points in the regression, to be
large. For the subsection estimator m is the number of estimates of 0 to compute
and a large m implies more regression computations that have to be made, as well
as a small value for n. For any given value of n, the choice of v and 1 has slightly
different considerations than the choice of m and n for the section estimator. An
important consideration for the subsection estimator is that I be "close" to n so
that the joint distribution ,(l) and 6,(l) will be similar in shape to that of j(n)
and (n). If the two joint distributions are not similar in shape, then the subsec-
tion estimate of 0 could be very biased, reducing the effectiveness of the control.
This suggests making v as small as possible while still being two to three times the
number of coefficients being estimated. If n is too small, the few samples available
for the v subsections of length I will force both v and 1 to be small, resulting in
possibly little structure to exploit, or unreliable estimates of 0, both of which result
in ineffective control. The solution would seem to be to make n large.

Making n too large results in the same problems for the subsection estimator as
it did for the section estimator. If n is too large, there are few controlled section
estimates which reduces the precision of the variance estimate. More importantly,
n is still the critical factor for the joint normality of the estimate being controlled
and the control estimate. If n is too large, the asymptotic joint normality reduces
the effectiveness of the linear control to that of the linear control.

The selection of m and n for a fixed N which minimizes the bias, variance or mean
square error of the controlled estimate is a complicated function of many parameters.
These parameters include the value of a, the sample size N, and unfortunately,
because of the need to estimate 0, characteristics of the unknown joint distribution
of the underlying populations Y and C. An alternative to attempting to estimate
the optimal m and n via a functional approximation is to use graphical methods to
assist in the selection of m and n such as in Heidelberger and Lewis (1981). In the
experiment described below, for a given fixed sample size N, the results of using
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different values of n are compared graphically as well as numerically to assist in

selecting m and n.

6 THE SIMULATION EXPERIMENT

6.1 The Factors

The simulation experiment used M replications to investigate simulation pro-
cedures for estimating the a quantile of a distribution and estimating the variance
of the quantile estimate. The factors in the simulation experiment included the
distribution of the underlying population of interest, the value for a, the method
of estimating the. quantile, the sample size, the choice of m and n for the sec-
tion estimator and the choice of the m for the m-fold jackknife estimator. All of
the computations were performed in the APL2-based statistcal computing package
GRAFSTAT.

6.2 The Statistic of Interest

The distribution used in the results presented here was suggested by Hsu and
Nelson (1987). The statistic of interest is the estimator for the a quantile of a
random variable Y where

Y =(1.01. X ) 1 0 0 + ,

and X has a uniform (0,1) distribution and c has a uniform (0,.5) distribution and
is independent of X. The untransformed control is the estimator of the a quantile
of X. The value of a will be .95 for the results presented here. The true value for
the .95 quantile of Y, namely y.95, is .164167.

Figure 1 shows the nonlinear nature of the relationship between ,Q(n) and i4(n)
for four values of n with the sample size N fixed at 1000. Prior to plotting, the
quantile estimates were standardized by subtracting off the sample mean of the
quantile estimates from each estimate, and then dividing each estimate by the sample
standard deviation of the quantile estimates. Thus the "true" values are zero. The
quantile estimates were standardized so that one could visually assess the correlation
between the quantile estimator of interest and the control quantile estimator. Note
that the scales of the axes in Figure 1 change as n increases to 100, 250 and 500 as
the ranges of the standardized quantile estimates become more concentrated about
the true values of zero.

For n = 25 in Figure 1, the relationship between ,(n) and 1(n) is highly
nonlinear. As n increases to 100, 250 and 500 the relationship seems to become more
linear as the number of estimates available decreases to just two at n = 500 where
with only two pairs of estimates, the relationship must appear linear. However, one
can see from Figure 2, where N = 6000, that even for n = 1000 the relationship
between 90 (n) and 4(n) still has nonlinear tendencies. In all cases, the relationship
appears to be one that would be well approximated by a monotone transformation.
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Figure 1: Scatterplots illustrating the joint distribution of standardized section point es-
timates of the .95 quantile of Y and X for n = 25, 100, 250, and 500 from a sample of
N =1000 samples. Since the estimates are standardized, the true values are zero.
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Figure 2: Scatterplots illustrating the joint distribution of of standardized section point
estimates of the .95 quantile of Y and X for n = 250, 500, 1000, and 1500 from a sample of
N = 6000 samples. Since the estimates are standardized, the true values are zero.
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6.3 The Section Estimator versus the Jackknife Estimator

As stated previously, the section estimator was preferred over the jackknife esti-
mator for estimating the a quantile along with an estimate of the variance (standard
deviation) of the quantile estimator. Analytically, the section estimator of the vari-
ance of the section estimate from (17) is an unbiased estimator and the section
estimate of the standard deviation has 0(1/m) bias. We will graphically show the
performance of the section estimate of the standard deviation so that the graphs
can be compared with the performance of the jackknife estimation procedure.

The performance of the section estimator can be seen in Figure 3. The top graph
of Figure 3 shows a series of boxplots of section point estimates of the .95 quantile
of Y calculated using (6). For a discussion of boxplots see Chambers et. al. (1983,
chap. 2). The boxplots summarize the distribution of the section estimates, for
varying n, from 300 independent replications of N = 1000 samples. The data under
the graph are the sample statistics from the 300 estimates in each boxplot. The
bottom graph consists of boxplots of section estimates of the standard deviation,
calculated using (7), corresponding to the point estimates in the top graph, again
with the sample statistics underneath.

The top graph in Figure 3 shows that as n increases from 10 to 500, for a fixed
sample size N = 1000, the bias in the section point estimates tends to decrease as
expected. However, the top graph also shows that increasing n does not necessarily
decrease the sample variance of the section quantile estimator because of the impact
of decreasing the number of estimates, m, with which the section point estimate of
the quantile is computed.

The bottom graph of Figure 3, of the section estimates of the standard deviation
of the section point estimate, shows another effect of increasing n. As n increases
and m decreases, it is easy to see that the standard deviation of the estimates of
the standard deviation also increases, from .00227 for n = 10"to .01170 for n = 500,
so that the section estimate of the standard deviation becomes less precise. As the
section estimate of the standard deviation has 0(1/m) bias, one would expect that
the section estimate of the standard deviation should be closer to the estimate of the
sample standard deviation for small n. A check of the sample standard deviation in
the top graph against the mean of the section estimates of the standard deviation in
the bottom graph shows that in fact the two values of .02030 and .01974 are fairly
close at n = 10 and become farther apart as n increases. The significance of the
difference will be examined in a moment.

Figure 4 shows the performance of the jackknife estimator for y". The top
boxplots are the m-fold jackknife estimate of the .95 quantile of Y, for varying m,
from the same 300 independent replications of N = 1000 samples used for the section
estimates in Figure 3. The data under the graph are the sample statistics from the
300 estimates in each boxplot. The bottom graph in Figure 4 consists of boxplots
of the corresponding jackknife estimates of the standard deviation of the jackknife
point estimates in the top graph, again with the sample statistics underneath.

The top graph in Figure 4 shows that for a fixed sample size N = 1000, the jack-
knife estimates become highly variable as m increases, as well as having in general
a slight positive bias (y, = .164167). The main reason for not using the jackknife
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technique however is the poor performance of the jackknife estimate of the standard
deviation of the point estimate. A check of the sample standard deviation in the
top graph against the mean of the jackknife estimates of the standard deviation in
the bottom graph shows that the two estimates of the standard deviation become
quite far apart as m increases. For m = 2 the values are the closest, at .02202 for
the sample standard deviation of the point estimate and .01555 for the jackknife
estimate of the standard deviation of the point estimate

The purpose of estimating the standard deviation of the point estimators is to
have a measure of the precision of the point estimate. The section and jackknife
estimators of the standard deviation of the point estimate are both trying to estimate
the standard deviation of a sample of section or jackknife point estimates. To
more formally assess their performance we used the data from the 300 independent
replications previously shown in Figures 3 and 4. The procedure used for both the
section estimates and the jackknife estimates was as follows:

1. The point estimates from the 300 replications were sectioned into 30 inde-
pendent sections of 10 point estimates each. The sample standard deviation
was computed for each of the 30 sections. Thus there were 30 independent
estimates of the sample standard deviation for both the section estimates and
the jackknife estimates.

2. Likewise, the 300 estimates of the standard deviation were sectioned into 30
independent sections of 10 estimates of the standard deviation each. These
10 standard deviation estimates were averaged to get a single estimate of the
standard deviation for each section. Thus there were 30 independent estimates
of the standard deviation from the estimator, for both the section estimator
and the jackknife estimator.

3. For each of the 30 sections, the mean of the 10 section or jackknife estimates of
the standard deviation from step 2 was subtracted from the sample estimate
of the standard deviation from step 1 to yield 30 independent estimates of the
difference.

If the section or jackknife estimator is a reliable estimate of the sample standard
deviation, then the difference of the sample standard deviation and the section or
jackknife estimate of the standard deviation should be zero.

Note that while the same data is used for all of the section and jackknife es-
timators so that there is no independence between the different estimators, the 30
estimates of the difference for a single estimator i.e., the section estimate with n = 25
or the 2-fold jackknife are independent. Figure 5 has boxplots of the differences for
both the section estimates (top graph) and the jackknife estimates (bottom graph).

The top graph in Figure 5, of the section estimator, shows that the sample mean
for the smaller n is within one standard error of zero. When n is increased to 250 and
500, where the section estimates of the standard deviation are more variable because
of the small m, the means of the differences, .00140 and .00300, are still within three
standard errors of zero. This shows that section estimator of the standard deviation
of the section point estimate is a reliable estimate of the sample standard deviation
of the point estimate.
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The Data conslimt of Each Replication 's Quantile Estimate

0.28

0.24

0.20

0.16 --

0. 12k
n 10 25 50 100 250 500

Mea 0.20385 0.16559 0.18235 0.15997 0.16855 0.16471
Std Dev 0.02030 0.01987 0.02319 0.01851 0.02025 0.01952

Std Error 0.00117 0.00114 0.00133 0.00106 0.00118 0.00112

The Estimated Std Devs of the Quantile Estimates

0.061

0.04'

n 10 25 s0 100 250 500
Mean 0.01974 0.01622 0.02134 0.01769 0.01787 0.01555

Std Dew 0.00227 0.00414 0.00679 0.00600 0.00848 0.01170
Std Error 0.00013 0.00023 0.00033 0.00034 0.00048 0.00067

Figure 3: Boxplots of section point estimates of y.95 (top) and section estimates of the

standard deviation of the point estimates (bottom) for 300 replications of N = 1000 samples

and varying n.

The Data consists of Each RepliccUon's Quantile Estimate

0.3

0.1

-0.1 L

m 2 5 10 25 50
Mean 0.18568 0.18508 0.18552 0.18822 0.16053

Std Dew 0.02202 0.02513 0.03132 0.04958 0.07443
Std Error 0.00127 0.00145 0.00180 0.00286 0.00429

The Estimated Std Dew of the Quantlle Estimates
0.08r ,

0.06I

0.04

0.02

m 2 6 10 25 50
Mean 0.01555 0.01883 0.01966 0.02052 0.02068

Std Dev 0.01170 0.00969 0.00962 0.01150 0.01334
Std Error 0.00067 0.00056 0.00055 0.00066 0.00077

Figure 4: Boxplots of rn-fold jackknife point estimates of Y95 (top) and rn-fold jackknife

estimates of the standard deviation of the point estimates (bottom) for 300 replications of

N = 1000 samples and varying m.
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The bottom graph in Figure 5 shows the opposite for the jackknife estimator.
For no m is the mean of the differences within three standard errors of zero. If one
tests, for each m, the normality of the differences for the jackknife estimates, one
can not reject at the .95 confidence level the hypothesis that the differences have
a normal distribution. For each m, the .95 confidence interval for the mean of the
fitted normal distribution does not include zero. Thus the jackknife estimate of
the standard deviation of a jackknifed quantile estimate is a biased and unreliable
estimate. We feel this is strong evidence for not using the jackknife technique for
estimating quantiles and the variance of the quantile estimate.

30 Replications of (Sample - Section) Estimates of the SLd Dev

0.015
0.010 o0o

-0.005

n 10 25 50 100 250 500
Mean -0.0003 0.00081 0.00090 0.00016 0.00140 0.00300

Std Decv 0.00434 0.00458 0.00640 0.00388 0.00575 0.00610
Std Error 0.00079 0.00083 0.00118 0.00070 0.00105 0.00111

30 Repllcations of (Sample - Jackknife) Estimates of the Std Decv

0.08
0.06 -

0.04 [
0.02- 0 +

m 2 5 10 25 50
Mean 0.00565 0.00539 0.01066 0.02743 0.05101

SLd Decv 0.00664 0.00703 0.00774 0.01187 0.02006
td Error 0.00121 0.00128 0.00141 0.00218 0.00388

Figure 5: Boxplots of differences between estimates of the sample standard deviation of
the point estimate and the section (top) and m-fold jackknife (bottom) estimates of the
standard deviation of the point estimate based on 30 sections of M = 300 independent
replications of N = 1000 samples each.

6.4 Comparing the Crude, Linearly Controlled and Nonlinearly
Controlled Est;inators

The crude, linearly controlled and nonlinearly controlled estimators will be com-
pared both graphically and numerically. Now the number of replications is M = 20
and the number of samples in each replication is fixed at N = 1000. The section
estimator will be used for all three estimators. For the nonlinearly controlled es-
timator, the monotone transformation will be the scaled power transformation so
that the control function will be

,(n n & 0(n - 8 Xi(n)12 - 1 _

02 0 }
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6.4.1 Comparison When the Sample Size N = 1000

Figure 6 shows the performance of the three estimators as triplets of boxplots for
n = 25, 100, 250, and 500. In each of the graphs that follow, the left boxplot of the
triple is the crude estimate, the middle boxplot of the triple is the linearly controlled
estimate and the right boxplot of the triple is the nonlinearly controlled estimate.
The statistics under each graph are the respective means of the data in the boxplot
for the crude, linearly controlled and nonlinearly controlled estimators.

The boxplots in the top graph of Figure 6 contain the final quantile estimates
for each of the estimators. This graph shows the effect of a control function that
is biased because of the use of the asymptotic expected value. Without the biased
control function each of the boxplots would look virtually the same because the
control function would be mean zero and so would not change the expected value of
the point estimate. The bias in the control function tends to reduce the bias of the
point estimate with the exception of the linearly controlled estimate at n = 25.

The boxplots in the bottom graph of Figure 6 contain the section estimates of
the standard deviation of the point estimators. One can see that as n increases,
the mean of the estimated standard deviation of the linearly controlled estimate
decreases, from .01123 to .00391, while the mean of the estimated standard deviation
for the nonlinear control increases, once n is greater than 100, from .00241 to .00374,
until the values for the linear control and the nonlinear control are about the same.
In fact, the estimator that minimizes the variance can be seen to be the nonlinearly
controlled estimator at n = 100 with a value of .00241. It is also clear that when n is
large at 250 and 500, the small m of 4 and 2 causes higher variance in the estimates
of the standard deviation.

The top graph in Figure 7 combines the two graphs from Figure 6, the bias and
the variance, in that it contains the estimated mean square error of the estimators.
It can be seen with this graph that the estimator that minimizes the mean square
error is again the nonlinearly controlled estimator at n = 100 with a value of .00005.
In fact the estimated mean square error for this estimator is under one-half of the
best mean square error for the linear control of .00013 that is at n = 250. At
n = 500 the values are the same, .00029, since there are only 2 quantile estimates
with which to work. The other factor affecting the nonlinear control besides having
only 2 quantile estimates to work with is that at n = 500 the joint distribution of
the crude estimate and the control estimate is closer to multivariate normal than at
n = 100.

The bottom graph in Figure 7 is a summary of the percent variance reduction
achieved by the various estimators. The percent variance reduction for each esti-
mator is computed using the estimate of the variance of the crude estimate which
is why the value for the crude estimator is 0. This graph again highlights the effec-
tiveness of the nonlinearly controlled estimator at smaller n. The highest percent
variance reduction is .97568, which is actually achieved at n = 25 and not n = 100
because the percent variance reduction is a relative measure and the crude estimator
at n = 25 had higher variance than the crude estimator at n = 100. This graph also
points out the high variability of the variance reduction for large n as the number
of quantile estimates becomes small.
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Ya The Data Consists of Each Replicaton's Quantile Estimate

0.24

0.20 Ti0.16 .
Means n - 25 n- 100 n - 250 n - 500
Crude 0.18367 0.15786 0.16515 0.16160
Lin Con 0.19830 0.16949 0.16763 0.16212
Nonin C 0.15146 0.16200 0.18525 0.18175

(Yj The Estimated Std Dm of the Quantfle Estimates

0.03 I
0.02

0.

Means n - 25 n - 100 n - 250 n , 500
Crude 0.01781 0.01479 0.01586 0.01165
Lin Con 0.01123 0.00573 0.00397 0.00391
Nonln C 0.00274 0.00241 0.00307 0.00374

Figure 6: Boxplots of section crude, linearly controlled and nonlinear controlled estimators
showing the point quantile estimates of Y.9s (top) and the estimates of the standard deviation
of the point estimates (bottom) from M = 20 independent replications of N = 1000 for
varying n.

.S. The Estimated Mean-Square Error

0.006

0.006

0.004

0.002

Means n-25 n- 100 n - 250 n - 500
Crude 0.00066 0.00055 0.00057 0.00058
Lin Con 0.00175 0.00021 0.00013 0.00029
NonLn C 0.00007 0.00005 0.00011 0.00029

X Y.R. Variance Reduction Based on Estimated Std Devs

0.8
0.6

0.4 .
0.2

01U
Means n - 25 n - 100 n -250 n - 500
Crude 0 0 0 0
Lin Con 0.59029 0.84540 0.04167 0.63737
NonLn C 0.975085 0.94594 0.85888 0.54238

Figure 7: Boxplots of section crude, linearly controlled and nonlinear controlled estimators
showing the estimated mean square error (top) and percent variance reduction (bottom)
from M = 20 independent replications of N = 1000 for varying n.
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6.4.2 Comparison When the Sample Size N = 5000

The next pairs of graphs, Figures 8 and 9 are identical in nature to the graphs for
N = 1000 only now the data is from estimates made from a sample size of N = 5000.
The number of samples used to compute each section estimate n is unchanged so
increasing the sample size only increases m, the number of quantile estimates. The
larger m greatly reduces the problem of high variability of the estimates caused by
having only 2 quantile estimates with which to work at n = 500.

In the top graph of Figure 8, increasing m has slightly improved the bias of the
mean of the nonlinearly controlled estimates so that it is now less than the bias
of the crude estimate for each n. At the same time the bias of the mean of the
linearly controlled estimates has increased. A more significant impact of increasing
m, shown in the bottom graph, is the drop in the estimated standard deviations
for all estimators as compared to N = 1000. The variability of the estimates of the
standard deviation has decreased as well.

The mean square errors of the top graph in Figure 9 show again the nonlinear
control at n = 100 does better than the best linearly controlled estimate. However,
as n increases, one can lose the effectiveness of the nonlinear control as both the
number of quantile estimates decreases and the quantile estimates approach multi-
variate normality. The impact of increasing N and m from Figure 7 is seen in the
bottom graph of Figure 9 as the variability of the estimate of the percent variance
reduction is greatly reduced.

7 SUMMARY

Nonlinear controls have been seen to be effective in improving the variance reduc-
tion over linearly controlled estimates of the mean. Sectioning is a useful procedure
for computing point estimates for quantiles along with an estimate of the variance of
the point estimate. The jackknife is not a useful procedure as the jackknife estimate
of the variance of the jackknife point estimate is unreliable. Controlling quantiles
with nonlinear controls is analytically tractable if the nonlinear transformations of
the control quantile estimator are limited to strictly monotone functions. With this
restriction, one can approximate the expected value of the transformed quantile es-
timator with its asymptotic expected value, namely the transformed value of the
true quantile for the control. The approximation induces additional bias into the
control function. However use of a biased control function can reduce the first order
bias in the controlled estimate.

Finally, when one is considering the choice of m and n to use for the sectioning
estimator, one must keep n small and avoid approaching the asymptotic multivariate
normal distribution. As the joint distribution of the crude estimate of the quantile
of interest and the control quantile estimate approaches multivariate normality, the
effectiveness of the nonlinear control reduces to that of the linear control.
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0.22

0.20

0.18 -0.16 -

Means n - 25 n - 100 n-250 a - 500
Crude 0.16821 0.18104 0.17229 0.18654
LIn Con 0.20423 0.17668 0.17243 0.16738
NonIn C 0. 18150 0.16293 0.18777 0.18550

S(Y The Estimated Std Deva of the Quantile Estimates

0.012 -

0.008

0.004 II
Means n - 25 n- 100 n - 250 n - 500
Crude 0.0049 0.00704 0.00845 0.00825

Un Con 0.00570 0.00329 0.00228 0.00164
NonIn C 0.00143 0.00077 0.00112 0.00117

Figure 8: Boxplots of section crude, linearly controlled and nonlinear controlled estimators
showing the point quantile estimates of y.95 (top) and the estimates of the standard deviation
of the point estimates (bottom) from M = 20 independent replications of N = 5000 for
varying n.

)Ls.U. The Estimated Mean-Square Error

0.003

0.002 -

0.001

Means a - 25 n - 100 n - 250 n - 500
Crude 0.00019 0.00014 0.00022 0.00018
Ln Con 0.00176 0.00020 0.00008 0.00002
Nonin C 0.00003 0.00001 0.00003 0.00001

x V. Variance Reduction Baed on Estimated Sid Do"1.0 : 4- .,
0.8 +'
0.81: +
0.4j .~

0.2

Means n-25 n- 100 n - 250 n - 500
Crude 0 0 0 0
Un Con 0.55104 0.82754 0.92806 0.95463
NonIn C 0.97168 0.98971 0.97686 0.97228

Figure 9: Boxplots of section crude, linearly controlled and nonlinear controlled estimators
showing the estimated mean square error (top) and percent variance reduction (bottom)
from M = 20 independent replications of N = 5000 for varying n.
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